What is the Newton‑Raphson Method?
Derivation of the Algorithm
Step-by-Step Example
Convergence and Limitations
Application in GATE / Engineering Maths
Download PDF Notes
Newton-Raphson Method:
Finding the Root of \(f(x)=x\log_{10}x-1.2\) with Newton’s Method
Step 1: Locate an interval \([a,b]\) that brackets the root by evaluating successive integers \(x=0,1,2,3,\dots\). Stop when \(f(x)\) changes sign.
- \( f(0) = -1.2 \) (negative)
- \( f(1) = -1.2 \) (negative)
- \( f(2) = -0.5979 \) (negative)
- \( f(3) = 0.23136 \) (positive)
Because the sign changes between \(x=2\) and \(x=3\), the root lies in the interval \([2,3]\). Choose the initial approximation \(x_{0}=2\).
Step 2: Differentiate:
\(f'(x)=\log_{10}x+\log_{10}e=\log_{10}x+0.43429.\)
Step 3: Write Newton’s iteration formula
\( x_{n+1}=x_{n}-\frac{f(x_{n})}{f'(x_{n})} =x_{n}-\frac{x_{n}\log_{10}x_{n}-1.2}{\log_{10}x_{n}+0.43429}=\frac{0.43429\,x_{n}+1.2}{\log_{10}x_{n}+0.43429}. \)
Step 4: Iterate until successive values stabilize.
| Iteration | Value |
|---|---|
| \(x_{1}\) | \(\displaystyle \frac{0.43429(2)+1.2}{\log_{10}2+0.43429}=2.81\) |
| \(x_{2}\) | \(\displaystyle \frac{0.43429(2.81)+1.2}{\log_{10}2.81+0.43429}=2.741\) |
| \(x_{3}\) | \(\displaystyle \frac{0.43429(2.741)+1.2}{\log_{10}2.741+0.43429}=2.74064\) |
| \(x_{4}\) | \(\displaystyle \frac{0.43429(2.74064)+1.2}{\log_{10}2.74064+0.43429}=2.74065\) |
Hence the approximate root is
\( \boxed{2.7406}\quad\text{(correct to four decimal places).} \)
Newton–Raphson Method — Root of \(x^{3}-3x-5=0\)
Step 1: Evaluate \(f(x)=x^{3}-3x-5\) at successive integers to locate a sign change.
- \( f(0) = -5 \) (negative)
- \( f(1) = 1 - 3 - 5 = -7 \) (negative)
- \( f(2) = 8 - 6 - 5 = -3 \) (negative)
- \( f(3) = 27 - 9 - 5 = 13 \) (positive)
The sign changes between \(x=2\) and \(x=3\), so the root lies in \([2,3]\). Choose \(x_{0}=2.4\) as the initial guess.
Step 2: The derivative is
\(f'(x) = 3x^{2}-3. \)
Step 3: Newton’s iteration formula is
\( x_{n+1}= x_{n}-\frac{f\!\left(x_{n}\right)}{f'\!\left(x_{n}\right)} = x_{n}-\frac{x_{n}^{3}-3x_{n}-5}{3x_{n}^{2}-3} = \frac{2x_{n}^{3}+5}{3x_{n}^{2}-3}. \)
Step 4: Iterate until the values stabilize.
| Iteration | Value ( \(x_{n}\) ) |
|---|---|
| \(x_{1}\) | \(\displaystyle \frac{2(2.4)^{3}+5}{3(2.4)^{2}-3}=2.28627\) |
| \(x_{2}\) | \(\displaystyle \frac{2(2.28627)^{3}+5}{3(2.28627)^{2}-3}=2.279047\) |
| \(x_{3}\) | \(\displaystyle \frac{2(2.279047)^{3}+5}{3(2.279047)^{2}-3}=2.2790188\) |
The approximate root is
\( \boxed{2.2790}\quad\text{(correct to four decimal places).} \)
Newton–Raphson Method for \(3x = \cos x + 1\)
Step 1: Define the function:
\( f(x) = 3x - \cos x - 1 \)
Evaluate \(f(x)\) at values of \(x = 0, 1, 2, \ldots\):
- \(f(0) = -2\) (negative)
- \(f(1) = 1.4597\) (positive)
The sign changes between \(x = 0\) and \(x = 1\), so the root lies in \([0, 1]\). Choose \(x_0 = 0.6\) as the initial approximation.
Step 2: Compute the derivative:
\( f'(x) = 3 + \sin x \)
Step 3: Apply Newton’s iteration formula:
\( x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{3x_n - \cos x_n - 1}{3 + \sin x_n} = \frac{x_n \sin x_n + \cos x_n + 1}{3 + \sin x_n} \)
Step 4: Perform iterations:
| Iteration | Value ( \(x_n\) ) |
|---|---|
| \(x_1\) | \(\displaystyle \frac{0.6 \cdot \sin(0.6) + \cos(0.6) + 1}{3 + \sin(0.6)} = 0.6071\) |
| \(x_2\) | \(\displaystyle \frac{0.6071 \cdot \sin(0.6071) + \cos(0.6071) + 1}{3 + \sin(0.6071)} = 0.6071\) |
The iterations converge. Hence, the approximate root is:
\( \boxed{0.6071} \quad \text{(correct to four decimal places).} \)
Newton–Raphson Method for \(x^{4}-x-10=0\)
Step 1 — Locate an interval bracketing the root.
- \( f(x) = x^{4} - x - 10 \)
- \(f(0) = -10\) (negative),
- \(f(1) = 1-1-10 = -10 \) (negative),
- \(f(2) = 16-2-10 = 4\) (positive).
The sign change between \(x=1\) and \(x=2\) shows a root in the interval \([1,2]\). Choose the initial guess \(x_{0}=1.8\).
Step 2 — Derivative.
\( f'(x)=4x^{3}-1. \)
Step 3 — Newton iteration.
\( x_{n+1} = x_{n}-\frac{f(x_{n})}{f'(x_{n})} = x_{n}-\frac{x_{n}^{4}-x_{n}-10}{4x_{n}^{3}-1} = \frac{3x_{n}^{4}+10}{4x_{n}^{3}-1}. \)
Step 4 — Compute successive approximations.
| Iteration | Value ( \(x_{n}\) ) |
|---|---|
| \(x_{1}\) | \(\displaystyle \frac{3(1.8)^{4}+10}{4(1.8)^{3}-1}=1.85833\) |
| \(x_{2}\) | \(\displaystyle \frac{3(1.85833)^{4}+10}{4(1.85833)^{3}-1}=1.85559\) |
| \(x_{3}\) | \(\displaystyle \frac{3(1.85559)^{4}+10}{4(1.85559)^{3}-1}=1.85558\) |
After convergence, the real root (to four decimal places) is
\( \boxed{1.8556}. \)
EXERCISE
- Use Newton–Raphson to find the positive root of \(x^{3}-x-1=0\) (correct to four decimal places).
- Apply Newton–Raphson to approximate the root of \(2\sin x - x = 0\) between \((1,2)\).
- Determine the real root of \(e^{x} + x = 5\) using Newton–Raphson.
- Find a root of the equation \(\sin x = 1 - x\) using the Newton–Raphson method, correct to four decimal places.
- Find the real root of the equation \(x^3 - 5x + 3 = 0\) correct to three decimal places using Newton–Raphson method.
- Find the real root of the equation \(\cos x - x^2 - x = 0\) correct to five decimal places using Newton–Raphson method.
Comments
Post a Comment